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Abstract

Properties of manganites are greatly affected by cooperative Jahn-Teller effect and

Hund’s interaction. The insulating (undoped) as well as metallic ferromagnetic states can

be described from a unified point of view based on two-band picture. The system is

intrinsically inhomogeneous and the metal-insulator transition is treated by means of

percolation theory.

Introduction

The paper is concerned with the properties of  magnetic oxides (manganites) , such

as La1-xDxMnO3   (D is a divalent  ion). The recent discovery of  colossal magnetic

resistance (CMR) has resulted in the revival of an intense interest in these oxides (see e.g.

review [1]). In this paper we focus mainly on the low temperature region, that is on the

ground state of the system. Our approach was described in [2-6]. Below we present key

points of our treatment and introduce some new aspects. The compounds are characterized

by a rich phase diagram and our goal is to study its evolution with doping. The Jahn-

Teller effect appears to be a key factor which determines the properties of the materials.
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Total Hamiltonian

The  LaMnO3  crystal has the following structure.

The Mn3+ ions are located at the corners, and the La ion at the center of the unit cell . This

cubic structure represents our starting point. In addition, the Mn3+ is caged by the O-2

octahedron ; locally this forms an  MnO6 complex with the Mn ion in the central position

surrounded by light O ions.

The d-shell of the Mn ion in the cubic environment is splitted into a doublet and

triplet. It is important that the three -fold manifold (t2g) is occupied by three d-electrons ,

whereas the upper double-degenerate term e2g is occupied by one electron only.

The key ingredients (interactions) are the following:

1. The strong Hund's rule coupling (this is the largest energy scale in our theory, see below)

aligns all spins in the same direction ;

2. Hopping, and

3. Cooperative Jahn- Teller effect. As a result , the total Hamiltonian is a sum:

          HJT =  HH +  Ht +  HJT                                                    (1)

Here
                   HH = - JH  

i
���� σ σ σ σ Si                                          (2)

                   Ht  =  
i
����    ti,i+δ (3)

                         HJT =  
i
����  g (τ i  Q i)  +  

i ,j
����  Jel. Q i Q j                        (4)

  

The Hund's coupling between the local spin S ( S=3/2) formed by the t2g  electrons

and the e2g  electron is described by the term

(2) ; σσσσ ( Pauli matrices) correspond to the spin of the e2g  electron ;

JH ≈ 1 eV. Note ,that  the unit cell contains one e2g electron and its motion  through the

lattice is described ( in the tight-binding picture) by the  term (3).

 The third term in Eq. (1) descibes another important ingredient which also affects

the behavior of the system , namely   the Jahn-Teller (JT) instability. Indeed, the e2g

electron is in the double-degenerate state ,and  it follows from the JT theorem (see, e.g. [7]
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) , that the electron-lattice couplng will lead to a static distortion and consequently, to a

change in the crystal symmetry. In Eq.(4)  g is the coupling constant,  Qi are the local active

JT  modes, τ τ τ τ is the "pseudospin" matrix  (see e.g. [8]).    

Let us make several comments. Hamiltonian (1) does not contain correlation effects

(Hubbard term) used in many papers. We’ve challenged such approach for several reasons.

First of all, there is no doubt about the importance of hopping and the  Hund’s and JT

terms. It is essential, and this is demonstrated in our papers [2-4, 6] that this is sufficient to

explain the major properties of manganites. It will be proven (see below) that the undoped

compounds can be treated as band insulators. The analysis of the metallic phase shows that

the band picture provides an excellent description of various data and, therefore insulating

and metallic phases can be described from an unified point of view. The next, but not a

least reason, stressed by one of the authors in [3] is that the JT effect which is also due to

Coulomb interaction, corresponds to the fact that there is only one electron on

the degenerate level, and this already reflects the correlation effect. Finally, it is of course

clear that dealing with the strictly atomic

d-orbitals would be a strong oversimplification. If a Mn ion is placed into the oxygen

octahedron environment, the e2g−−−−  terms are formed by the whole ligand, so that the “pure”

d-functions become considerably

hybridized with the surrounding oxygen states (e.g. see the discussion in [9,10]). Hence the

electronic polarization would undoubtly reduce the magnitude of the “Hubbard”- like(on-

site) interactions.

Speaking of term (3),we restrict the analysis to nearest-neighbor hoping. In a simple

band picture with one electron per unit cell, the system should be metallic.  Nevertheless, a

more careful analysis  which includes not only the hopping term, but also a strong Hund's
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interaction along with the cooperative Jahn-Teller effect, leads one to the picture of a

peculiar band insulator (see below).

Another essential point that we are dealing with a collective JT effect (see e.g.

[11]). Indeed, the key element of the picture is that the oxygen ion along the Mn-O-Mn

bond is shared between two neighboring octahedra. As a result, the distortions are not

independent. If a static distortion is fixed for a given site  (in practice, this distortion is an

elongation along one of the axis), it induces a contraction  of the octahedra  on the

neighboring site. In other words,

such collective JT effect would result in the so-called "antiferroelastic"  distortion of the

lattice , characterized by a structural vector, Q0. The

Hamiltonian (4) describes the collective JT effect. The last term in (4) describes the elastic

energy. We are dealing (see [12], [8]) with two normal modes Q2 and Q3, where:

Q2 ====
1
2

(x1 −−−− x4 −−−− y5 −−−− y2 ),

Q3 ====
1
6

(2z2 −−−− 2z6 −−−− x1 −−−− x4 −−−− y2 ++++ y5 ).
(5)

Note also that we start with, a somewhat oversimplified (the so-called “pseudocubic”)

crystalline structure for manganites. As it is

well-known [1], in that approximation the unit cell, say, for LaMnO3, may be taken as a

cube, with the lattice constant a0 ≅≅≅≅ 3.9°°°° A. Rare-
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earth or alkaline ions are placed at the center, while the manganese ions occupy the corner

sites. Mn 3++++ _  sites are caged into the oxygen octahedra, which share the O2  ions along the

Mn-O-Mn bond (another view would be that each La3+_ ion is cooped up in the midst of

twelve O2 ions). The ideal structure is then modified for real materials, AMnO3, due to a

mismatch in the ionic radii. The latter is commonly characterized by the tolerance factor, tf

(see e.g. in [1]):

t f ====
1
2

••••
RA ++++ RO

RMn ++++ RO

(6)

The effect of tf ≠≠≠≠  1 is that the oxygen octahedra become periodically tilted, and the unit

cell may then be comprised of a few “pseudocubic” cells. It is shown below that deviations

from the “pseudocubic” structure, i.e. deviations in the angle, α , of the Mn-O-Mn bond

from   180o  are not of much importance for the “average” electronic structure. However,

local  fluctuations in the tolerance factor (6) may play rather significant role for the

conducting properties of the “doped” manganites A1 xBxMnO3.

As  noted above,  Hund,s coupling corresponds to the largest energy  scale, so that

J
H >>t, gQ0 ;   JH ≈ 1eV ; t ≈ gQ0 ≈ 0.1 eV.                  (7)

Band insulator

The undoped compound contains terromagnetic layers along with the

antiferromagnetic ordering along the z-axis (A-structure). The presence of the A-structure

leads to the 2D transport which occurs along ferromagnetic layers. This is a consequence of

the transport being provided by spin-polarized carriers; then the charge transfer between

two neighboring sites with opposite spins (AF ordering in the z-direction) is frustrated.

To calculate the one-electron spectrum  it is convenient to use the normalized basic

functions of the form:

                   ψ1∞ z2+ ε x2 + ε2 y2  ; ψ2 = ψ1∗                                  (8)
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where   ε = exp (2πi/3) . This choice allows us to account for the cubic symmetry of the

initial lattice. We are using the tight binding approximation. One can use also the real basis

set:  φ1∞ dz2    and

  φ2∞ dx2- y2 The functions (8) can be expressed in terms of real

basis: ψ1= (1/√2) ( φ1 + iφ2) ; ψ2= (1/√2) ( φ1 − iφ2).

Let us consider first the band spectrum of the Hamiltonian (3) (the Hund’s term and

JT term being temporary omitted). The matrix ˆ t  in (3) on the basis (8) has the form:

Σ11 Σ12

Σ21 Σ22

����    
����    
����    ����    

����    
, (9)

where
Σ11 ==== Σ22 ==== Σ0 ==== (A ++++ B)[cos(kya) ++++ cos(kya)],

Σ12 ==== Σ21
∗∗∗∗ ==== Σ0 ==== (A −−−− B)[ cos(kxa) ++++ cos(kya)].

(10) 

A and B in (10) are two overlap integrals:

A ∝∝∝∝ ϕ1(z;x,y)ϕ1(z ++++ a;x,y),

B ∝∝∝∝ϕ2 (z;x,y)ϕ2 (z ++++ a;x,y).
(11)

where the bar ...(((( ))))  means the matrix elements for the interaction potential on the two

Wannier functions, ϕ1,2 , of the neighboring atoms (in the tight binding approximation A= -

A < 0). Simple geometric considerations for the d-shell show that B <<<< A ( B ≅≅≅≅
1

16
A ,

according to [10,13]). The cubic spectrum consists of the two branches:

ε1,2 (p) ==== ( A ++++ B)(cx ++++ cy ) ±±±± ( A ++++ B) cx
2 ++++ cy

2 −−−− cxcy (12)

(we introduced the notations ci ==== cos(kia),i ==== x,y,z ).

We can see from Eq.(12) that in this case  we are dealing  with two degenerate bands . All

electrons are spin-polarized, so that we have a peculiar filling of the band (one electron per

level) .If the energy band is partly occupied, the system is in the half-metallic state. In our

case the bands are half-occupied. However, the presence of the JT  distortion leads to an
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additional splitting. The JT deformations lead to the Brillouin zone being reduced by a

factor of two. As a result of filling the reduced zone, we obtain a band insulator.

The cooperative JT effect has an “antiferrodistorsive” nature. In order to obtain an

energy spectrum in the presence of the JT

distortion, one should solve a general secular equation which reflects the competition

between hoping and the JT terms. Let us calsulate the electronic spectrum of our model in

the presence of the “antiferrodistorsive” JT collective deformations. Experimentally, the

arrangment close to the one in which octahedrs are elongated along each x- or y- axis

preserves the tetragonal symmetry in the perpendicular plane. That will lead to the band’s

secular equation which can not be solved in the analytic form. However, one can consider

the contribution, which comes from the Q2 mode only; this deformation just changes the

sign on the adjacent sites of two sublattices. The we obtain:

[ε2 −−−− (gQ0 / 2)2 −−−−
5
4

f++++
2 ++++

3
4

f2 ] ++++ i
3

2
f ++++ f f ++++

2 −−−− iε 3f

f ++++
2 ++++ iε 3f [ε2 −−−− (gQ0 / 2)2 −−−− 5

4
f ++++

2 ++++ 3
4

f 2 ] −−−− i 3
2

f ++++f
 = 0

where

f ++++ (p) ==== A (cx ++++ cy ),f −−−− (p) ==== A(cx −−−− cy )

The resulting bi-quadratic equation produces the following four branches,
ε i (p)(i ==== 1, . ..4). Each of these four branches is determined in the reduced Brillouin zone:

ε1,2 (p) ==== (gQ0 / 2)2 ++++ 5
4

f ++++
2 ++++ 3

4
f2 ±±±± 3f2[(gQ0 / 2)2 ++++ f ++++

2 ] ++++ f ++++
4����    

����    
����    

����    
����    
����    

1
2

ε3,4 (p) ==== −−−− (gQ0 / 2)2 ++++ 5
4

f ++++
2 ++++ 3

4
f2 ±±±± 3f2[(gQ0 / 2)2 ++++ f ++++

2 ]++++ f ++++
4����    

����    
����    

����    
����    
����    

1
2

(13)

At large enough gQ0 / 2 the branches ε1,2 (p) are not crossing two other branches, ε3,4 (p).

Filling them up by two polarized electrons per
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doubled unit cell, completes the proof that, indeed, insulating LaMnO3 may be considered

as band insulator.

For example, two sets of the spectrum branches (13), ε1,2 (p) and ε3,4 (p) begin to

overlap for ε j====1(p)  andε j==== 3(p)  at px = py = π / 2 . The overlap is direct which imposes some

limit on the value of the JT mode which makes LaMnO3 to be an insulator:

gQ0 >>>> 0.1A (14)

Ferromagnetic metallic state

In this section we focus on the ferromagnetic metallic state (FMS) of the

manganites. This phase corresponds to the doping level 0.5≥x≥0.17 and undergoes the

most intensive study, because the CMR phenomenon has been observed in this region. We

treat the ferromagnetic metallic compound as a 3D Fermi liquid with a two-band spectrum.

The transport data show that in many manganites the mean free path greatly exceeds the

lattice period.

The evaluation of the Fermi surface for FMS and analysis of the optical properties

and the spin-wave spectrum has been describe in detail in [6]. The analysis is interesting

for its own sake, but, in addition, allows one to evaluate the major parameters of our model.

As was mentioned above, the ferromagnetic phase (0.17≤x≤0.5) is a 3D system. According

to the data [14], the JT distortion is not essential in

the low temperature region, and the energy spectrum is determined by the first two terms in

the Hamiltonian (1), that is, by the hopping and by the Hund’s interactions. The treatment

can be easily generalized for the 3D case and in the approximation A>>B (see above), the

carriers occupy two energy bands determined by the relation (in units A):

ε±±±± ==== ˜ f ++++ ±±±± r                       (15)
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where ˜ f ++++  and r are defined by Eq. ( ) and

˜ f ++++ ==== cx ++++ cy ++++ cz (15’)

r ==== [cx
2 ++++ cy

2 ++++ cz
2 −−−− cxcy −−−− cy cz −−−− czcx ]

1
2 (15”)

The topology of the Fermi surface strongly depends on the carrier concentration,

that is, on the doping level. Hund’s interaction leads to the carrier system being spin-

polarized. As a result, each level is occupied by single e2g electron (“half-metallic state”).

Note also that the transport data (see e.g. [15]) allow us to calculate the mean free

path l. The calculation is based on the relation ρ=m(ne2τ)-1 and consequently, on the

expression l ==== (3π2 )1 3 h(e2ρ)−−−−1 n2 3 . For example we obtain, with use of values: n≅1021 and

ρ≅10-4 Ω•cm, the value l≅102Å. This value greatly exceeds the interatomic distance and

corresponds to the clean metal. Then the band picture is justified.

Making use of the spectrum (15), we calculate the concentration dependence of the

Fermi-level, EF(x), the density of states (DOS), ν(x), the spin stiffness, D(x), and the whole

magnon spectrum, ω(k,x), and the conductivity, σ(ω,x), both on the single hopping

integral, Α, see [6].

Let us write down also the wave functions which corresponds to the terms ε±±±± .

These wave functions are linear combinations of the wave functions formed the basic set.

For the case of real basics φ1 ∝∝∝∝ dz2  and φ2 ∝∝∝∝ dx2 −−−−y2  we obtain

ψ1 ====
1
2

eiκ n s ++++ϕ1(r −−−− n ) ++++ s−−−−ϕ2 (r −−−− n ){{{{ }}}}����

ψ 2 ====
1
2

eiκ n s−−−−ϕ1(r −−−− n ) −−−− s++++ϕ2 (r −−−− n ){{{{ }}}}����
(16)

s±±±± ==== (1±±±± (γ r))1 2 (16’)
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where r is defined by Eq. (15’) and γ ==== 2 cosκz ++++ f ++++ ,f ++++  is defined by (15’).

The analysis of the spin-wave excitations and optical properties (see below) of

manganites is of particular interest because it provides an unique information about the

carrier’s system. In this section we describe the calculation of the spin-wave spectrum for

various doping levels in the metallic phase.

Our goal is to evaluate the spin-wave dispersion law for the ferromagnetic metal

described by the Hamiltonian

H ==== A aiσ
++++ ai ++++δ ,σ���� ++++ JH aiσ

++++ ˆ S σσ 'aiσ 'Si���� (17)

Here A is the hopping parameter (see Eqs. (11), (15)) which determines the bands

widths. The spectrum has been evaluated in [16] for the one-band model. Below we

describe a rigorous, self-consistent calculation of the spin wave dispersion law in the

framework of the two-band picture. Indeed, the e2g-degeneracy leads to the two band

picture, it is essential that the presence of such picture is explicitly taken into account. In

addition, our approach allows to determine with good accuracy the values of the key

parameters, A and JH, along with their dependence on the doping level.

Let us write the deviations from the average spin, Sz , for localized t2g - spins

(s=S- Sz ) as:

s++++ (q ) ==== (2 Sz )1/ 2 ˆ b (q), s(q) ==== (2 Sz )1/ 2 b ++++(q) (18)

sz(q) ==== (ˆ b ++++ ˆ b )q

( ˆ b +, ˆ b  -the magnon’s operators). The first (δΕ1) and second (δΕ2 ) order corrections to the

ground state are calculated as perturbations in:

ˆ V ==== JH si
i
���� (ˆ a i

++++σˆ a i ) ==== JH si
i
���� ni (19)

For δΕ2 , the matrix elements in (19) are of the form:
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V pk,↑↑↑↑ ;p↓↓↓↓
l,l'

==== JH ↑↑↑↑ s±±±± (k) ↓↓↓↓ ×××× (αp −−−−k
l α P

∗∗∗∗l' ++++βp −−−−k
l βP

∗∗∗∗l'

) (19’)

The coefficients (αp
l ,βp

l ) are from the Bloch’s states on the basis (8):

αp
l ,l' ==== (Σ12 / 2 Σ12 )1/ 2 , βp

l,l' ==== ±±±±(Σ21 / 2 Σ12 )1/ 2 (20)

(here Σ12 , Σ21  are the off-diagonal elements of the hopping matrix ˆ t (p) on this basis). As a

result, we obtain a series of the Heisenberg spin

Hamiltonians accounting for interaction with the increasing number of neighbors. (For a

single band it was first noticed in [16]; in this paper we are using the realistic two bands

picture). After straightforward calculations (see [6]) we obtain

hω(k) ==== A (3 −−−− cx −−−− cy −−−− cz )D(x) / 3 (21)

and D(x)≡D(Ε(x)) is given by the integral:

d3p
(2π)3���� θ(Ε −−−− ε i (p)) 1 ±±±±

2cx −−−− cy −−−− cz

2R(p)
����    
����    
����    

����    
����    
����    ( ++++ ,)

����
����    

����    
				    





    

����    
����    

(here E is in units of A , pi≡ api)>

Let us calculate the conductivity σij(ω) which is described by the general Kubo-

Grinwood equation:

σ ij ==== −−−− πe2 h2

V
1
ω

f 0 εκ(((( ))))1−−−− f0 εκ'(((( ))))[[[[ ]]]]
κ ,κ '
���� ψκ ˆ v i ψκ' ψκ' ˆ v j ψκ ××××

×××× δ εκ' −−−− εκ −−−− ω(((( )))) −−−−δ εκ' −−−− εκ ++++ ω(((( ))))[[[[ ]]]]
(22)

Here f is the distribution function, κ is a quasi-momentum, ˆ v  is the velocity

operator. For the cubic crystal σij≡σiiδij. In our case of the two overlapping energy bands

the major contribution comes from the interband transitions. Then
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ψκ' ˆ v ψκ ' ≅≅≅≅ i h(((( )))) εs(κ
→→→→

) −−−− εs' (κ
→→→→

)����    
����    

����    
����    sκ

→→→→
Ω s' κ

→→→→
 (see [17]), where s,s’≡{1,2} is the band index,

and

sκ
→→→→

Ωs' κ
→→→→

==== −−−−i dr���� ∂u
s κ

→→→→ ∂ κ
→→→→����    

����    
����    
����    us' κ

→→→→
∗∗∗∗ (23)

As usual, the Bloch function is ψ
s κ

→→→→ ( r
→→→→

) ==== u
s κ

→→→→( r
→→→→

)ei κ
→→→→

r
→→→→

. As a result, we obtain the following

expression for the components σii (i=x,y,z) of the conductivity:

σ ii (ωx ) ==== β ˜ ω 3(((( )))) sin2 ˜ κ z(cos ˜ κ x −−−− cos ˜ κ y )2 δ(ε1 −−−− ε2 −−−− ω)
κ
˜ → → → → 
���� (24)

Here β ==== 3πe2 hav ; ˜ ω ==== hω A ;

One can calculate also the intraband (Drude) contribution. Then

sκ
→→→→

ˆ v sκ
→→→→

==== h∇∇∇∇εs (κ
→→→→

) , and we obtain:

σDr (ω, x) ====
e2 A

24aπ2h2 δ(ω) dS
κ
→→→→
l ∇∇∇∇ε(κ

→→→→
)����

l ====1, 2
���� (25)

Expression (25) contains as integration over the Fermi surface.

Major parameters. Experimental data.

Properties of manganites in the ferromagnetic metallic region (x~0.3) at low

temperatures are described by single hopping parameter A. This quantity can be treated as a

single adjustable parameter which enters our theory and allows one to describe various

properties of the ferromagnetic manganites. Its value can be determined from the spin-wave

spectrum in the long-wave region (ω=Dq2, D is the stiffness coefficient). Indeed, it is better

to use the
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data for small q because the long-wave region is less sensitive to an intrinsic disorder.

Using values a≅3.86Å [18], ˜ D (x=0.3)≅0.45 [6], and

the measurements of D [19], we obtain from the relation D ==== a 2 ˜ D (x) A 6  the value

|A|≅0.12-0.17eV, so that the bandwidth, W=6|A| does not vary for various materials

(W≅0.7-1eV). For example |A|=0.17eV for La0.7Sr0.3MnO3, |A|=0.15eV for Nd0.7Sr0.3MnO3,

|A|=0.12eV for La0.7Pb0.3MnO3.

The Fermi surface for x=0.3 is plotted in [6], Fig. 3. It is interesting that the Fermi

surface contains a “neck” section near the zone boundary; this leads to “2.5”-Lifshitz

transition.

We can determine also the value of the Fermi energy which is equal (see above)

EF(x)=|A|E(x). For example, for La0.7Sr0.3MnO3 the value of the Fermi energy is EF≅0.2eV.

One can see that this value is small relative to that in conventional metals.

Metal-Insulator Transition at Low Temperatures: Percolative Approach.

Let us focus now on the transition from insulating to metallic state in manganites

occurring at xc≅≅≅≅ 0.16. The initial doping leads to formation of polaronic states. The hole is

localized by Coulomb force inside of the unit cell. When concentration is small, average

distances between B atoms are large, which makes holes remain isolated.

Increase in doping leads eventually to transition to the metallic state at some

threshold value xc which is equal to 0.16. The question arises about the nature of such

transition. It is essential that the position of the dopant is completely random. The origin of

the



14

threshold xc and its value have been first understood in [2-6] in terms of percolation theory

. The latter considers any process which, roughly speaking, corresponds to some exchange

between two adjacent local sites. In the theory of percolation one may look for the

concentration at which the nearest neighbor atoms start to form infinite clusters piercing the

whole crystal. For the dopant atoms on the cubic sites it is known as the ``site'' problem: on

the simple cubic lattice it gives the critical concentration value at ~ 0.31. However, this is

not exactly our case. For the doped holes, gathering on few manganese sites around the

dopant, charge transfer takes place only along Mn-O-Mn bonds. Therefore the picture of a

critical cluster, constructed from the dopant -ions must be corrected: such cluster would

already have a finite “thickness” due to the holes spread over surrounding Mn - sites.

Numerical studies on the percolative models [20], see also [21], have shown that this

circumstance (i.e. the presence of the scale of a few lattice constants) strongly decreases the

value for the critical concentration, rapidly converging to its value for the homogeneous

problem, xcr ~0.16. It is remarkable that the experimentally observed

value of the critical concentration xc ≅≅≅≅ 0.16 corresponds to the value of the invariant of the

percolation theory.

The percolative nature of the metal-insulator transition implies the inhomogeneity

of the system, that is, we are dealing with a coexistence of two phases: metallic and

insulating. The mixture of

“two” phases, depending on the concentration, x, may look as intervened tiny “islands” and

“layers” of different “phases”. Well below and well above the threshold concentration xcr

one may imagine each corresponding phase as a bulk formation into which the second

phase is sparsely embedded. If there is a spill-over of charge carriers between two phases, it

is the electro-neutrality condition which regulates the tiny domain sizes.
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The percolative description of the metal-insulator transition implies coexistence of

two percolative phases. This concept  has a substantial experimental support. For example,

let us mention the pulsed neutron experiments [14]. According to [14] in La1-xSrxMnO3 the

presence of such insulating inclusions is seen up to x=0.35.  It is essential that in the 3D

percolative regime, the percolative paths (infinitely connected clusters) may coexist for

both phases simultaneously. The analysis of low temperature metallic properties performed

in the previous Section, seems to indicate that at least for concentrations x ~ 0.3, the

ferromagnetic phase component, in the first

approximation, occupies most of the bulk with other phase embedded into it and also seen

as reasonably small scattering centers.

According to the percolation approach, the metallic ferromagnetic “islands” exist at

x<xcr; they form an infinite cluster at x=xcr. Below the threshold these “islands” are finite

clusters containing delocalize holes, and their presence should lead to possibility to

observe such phenomena as electronic contribution to heat capacity at x<xc, finite a.c.

conducting, etc. To our knowledge, such systematic study has not been carried out.

Nevertheless, according to the data [], one can observe the finite value of the Sommerfeld’s

constant at x<0.16 in La1-xSrxMnO3.

Note also that in the band picture the magnetization M(x) is

(4-x)µB  as it is known [1] that M(x) actually increases at x>0.1. Interesting thing is that

M(x) has dependence, close to (4-x)µB (B, even at x ~ 0.3-0.4, indicating that admixture of

“insulating phase” still persists at these concentrations.
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